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Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. An angle bisector and an altitude emanating from the same vertex of a triangle
divide the opposite side into three parts. Is it possible that a new triangle may be
constructed from those three parts? (3 points)

2. Four positive integers are given such that each of them is divisible by the greatest
common divisor of the other three numbers, and the least common multiple of
any three is divisible by the fourth number. Prove that the product of these four
numbers is a perfect square. (4 points)

3. Two circles Γ1 and Γ2, with centres O1 and O2 respectively, touch externally at
point T . A common tangent touches Γ1 at point A and Γ2 at point B. A common
tangent to both circles at point T meets the line AB at point M . Suppose AC

is a diameter of Γ1. Prove that CM and AO2 are perpendicular to each other.
(4 points)

4. There is a checker in the corner square of an 8×8 chessboard. Petya and Vasya take
turns moving the checker. Petya starts first, and on his turn he moves as a chess
queen, where only the final square that the checker is moved over is considered
used. Vasya on his turn makes a double move as a chess king, where both squares
moved over are considered used. The checker cannot be moved over a used square.
The initial square is also considered used. The player who cannot make a move
loses. Who of the boys can play so that he will win for sure, no matter how his
opponent moves? (5 points)

5. A convex polyhedron is given with exactly three faces meeting at each vertex.
Each face of the polyhedron is coloured red, yellow or blue. The vertices, where
the faces of all three colours meet, are called multicoloured. Prove that the number
of multicoloured vertices is even. (5 points)
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1. Solution 1. No, it is not possible. Indeed, let CL be an angle bisector and CH
be an altitude of triangle ABC. Without loss of generality, assume that 6 A < 6 B.
Then, BC < CA. Since point H is located on side AB, 6 B is acute. Since CL is
an angle bisector and 6 BCH = 90◦ − 6 B < 90◦ − 6 A = 6 ACH, point H lies on
the line segment BL. Furthermore, since CL is an angle bisector, we have

BL

LA
=
BC

CA
< 1 which implies BL < LA.

Since BH +HL = BL, it follows that BH +HL < LA, so that BH, HL and LA
do not satisfy the Triangle Inequality. Thus, it is not possible to construct a new
triangle from those three parts.
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Solution 2. No, it is not possible. Indeed, let CM be a median of triangle ABC.
Since for an altitude, angle bisector and median emanating from the same vertex
of a triangle, the angle bisector is located between the median and altitude, we get

LA > MA = BM > BH +HL

which means that the Triangle Inequality is not satisfied by the line segments BH,
HL and LA. So, it is not possible to construct a new triangle from those three
parts.
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2. Let the four numbers be a, b, c and d. We claim that each prime number p has
an even exponent in the prime factorisation of the product abcd. Indeed, suppose
p has exponents α, β, γ and δ in the respective prime factorisations of a, b, c and
d. Without loss of generality, assume α ≥ β ≥ γ ≥ δ. Since d is divisible by



gcd(a, b, c), we have δ ≥ min{α, β, γ} = γ. Hence, γ = δ. Since lcm(b, c, d) is
divisible by a, we have β = max{β, γ, δ} ≥ α. Hence, α = β.

Thus, each prime number p has exponent 2α+ 2δ = 2(α+ δ) in the prime factori-
sation of the product abcd. As a consequence, abcd is a perfect square.

3. Solution 1. Let r1 and r2 be the radii of the circles Γ1 and Γ2, respectively.
Let P be the foot of the perpendicular dropped from point O1 onto BO2. Since
O1O2 = r1 + r2 and PO2 = r2− r1 in right-angled triangle O1PO2, by Pythagoras’
Theorem we have

O1P =
√

(r1 + r2)2 − (r2 − r1)2 = 2
√
r1r2.

Since ABPO1 is a rectangle, AB = O1P = 2
√
r1r2.
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Since AB and MT are tangents to both Γ1 and Γ2, MA = MT = MB, and since
MA+MB = AB,

MA = MB = MT = 1
2
AB =

√
r1r2.

Thus,
CA

MA
=

2r1√
r1r2

=
2
√
r1r2
r2

=
AB

BO2

and hence right-angled triangles CAM and ABO2 are similar.

Since AC and AB are perpendicular, AM and BO2 are also perpendicular, and,
therefore, hypotenuses CM and AO2 of the two similar triangles are perpendicular
to each other. The proof is complete.

Solution 2. Let X be the point of intersection of the line segment AO2 with Γ1.
Then, 6 AXC = 90◦ as subtended by diameter of Γ1. Thus, it is sufficient to prove
that points C, X and M lie on a straight line, which is equivalent to showing that
6 MXO2 = 90◦.

Since 6 CTA is subtended at circumference of O1 by its diameter, and MA =
MB = MT being equal line segments of tangents from the same point imply that
AB is the hypotenuse of the circumcircle of ATB,

6 CTA = 6 ATB = 90◦.



Hence 6 CTA+ 6 ATB = 180◦ and so C, T and B are collinear. Thus,

6 TXO2 = 6 TCA, since AXTC is cyclic

= 6 TBO2 (alternating angles, since AC ‖ BO2)

Therefore, TXBO2 is cyclic. Also, since 6 MTO2 and MBO2 are right angles, they
are supplementary, and hence MTBO2 is cyclic and consequently T , X, B, O2 and
M are concyclic. Therefore, 6 MXO2 = 6 MTO2 = 90◦ and we are done.
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Solution 3. Since AMTO1 and BMTO2 are kites, MO1 and MO2 are angle bisec-
tors of triangles AMT and BMT respectively, which means 6 O1MO2 = 90◦. Thus,
6 AMO1 = 6 BO2M with right-angled triangles AMO1 and BO2M being similar.
Therefore, there exists a mapping transforming triangle AMO1 into BO2M that
includes rotation onto 90◦, parallel move and dilation. Thus, O1 as the midpoint
of AC moves into M and M as the midpoint of AB moves into O2 which also
means that C moves into A. So a line segment CM moves into AO2 with the
angle between them being equal to the angle of the rotation, which is 90◦. This
completes the proof.
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4. Vasya can win for sure, no matter how his opponent moves. An 8× 8 chessboard
without the corner square can be divided into 3-square corners – to do so we place
one corner around the absent corner square with all other squares to be covered



by ten 3 × 2 rectangles, where each rectangle is formed by two 3-square corners.
Vasya’s strategy is to make both moves within a 3-square corner where Petya has
moved to. Then, every time before Petya’s move each 3-square corner is either
entirely open for moves or already closed. Thus, Vasya can always make his two
moves. Since, the game is finite, Vasya will win for sure.

Note. A square board of the size 2n×2n without the corner square can be divided
into 3-square corners. This can be proven by induction. The problem above is a
particular case of n = 3 with no need to prove the general case, if a construction
for the 8× 8 board is provided.

5. Solution 1. We call an edge red-yellow if it borders both a red face and a yellow
face. Consider a multicoloured vertex u. There is exactly one red-yellow edge (call
it e1) emanating from u. Let the other end point of e1 be v. At v, (the same)
red and yellow faces meet. If the third face incident with v is blue, then v is
also multicoloured, and no further red-yellow edges emanate from v. Otherwise,
another red-yellow edge (call it e2) emanates from v. Now move along e2 and repeat
the process. Continuing in this way, sooner or later we come to a multicoloured
vertex since we cannot return to the vertices we have already passed. Thus, all
multicoloured vertices can be divided into pairs as the ends of red-yellow edges.

Solution 2. We claim that with re-colouring of faces the parity of the quantity of
multicoloured vertices does not change. If so, a convex polyhedron can be made
of one colour and the statement of the problem is then obviously true. Indeed, let
us re-colour some red face yellow. Then, for the two other faces incident with the
re-coloured face at a vertex we match such a pair of the two faces with that vertex.
The vertex will change its multicolourness, from yes to no or vice versa, if and only
if such a vertex matches to a pair of faces which are blue and non-blue. Since there
are an even number of such pairs, we conclude that the number of multicoloured
vertices is even.


